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Page 10, eqn (25) for z2t read z tt

Page 20, eqn (38) second integral, read exp(-t /2)

Page 21, eqn (43) for k read K

eqn (47) E(z 3 ) -3' 1 00o

eqn (48) for 02 read t/o

Page 22, eqn(53) E(z') = 3

line 1 The skewness is not zero, and



Introduction

The present state of theoretical knowledge of wind generated

gravity waves, when studied as a random process in nature, is based on a

short crested Gaussian sea surface obtained by linearizing the Eulerian

equations of motion (Pierson [1952], [1955]; Longuet-Higgins [1957]), on

a second order extension of the Eulerian equations for long crested waves

in which the underlying linear waves are Gaussian (Tick [1959]), and on

various results involving wave spectra that do not specify the probability

structure of the waves, some of which involve nonlinear properties of the

waves (Phillips [1958], [1961]).

The short crested Gaussian model has proved fairly useful

in explaining the angular spreading and dispersion of swell, the marked

variation in height from wave to wave in a .,torm sea, wave refraction,

bottom pressure fluctuations caused by waves passing overhead, and the

motions of ships in waves (St. Denis and Pierson [1953], Lewis [1955],

Cartwright and Rydill [19561).

These applications are dependent on either the gross features

of the waves or on natural processes that appear to linearize the system

even further. For example, the wave profiles are in a sense averaged

over the length and beam of a vessel at sea, and the nonlinear effects are

reduced. The higher harmonics in a nonlinear profile and the high fre-

quency linear components are also attenuated with depth in such a way

that the application of Gaussian noise theory to the zero crossings of

bottom pressure fluctuations leads to useful results (Ehrenfeld, Good-

man, et al [1958]).

The spectrum of the time process at a fixed point has been

most f'equently studied. Since the actual wave is recorded, more or less,

the full nonlinear motion is recorded, and the spectrum of this nonlinear

motion is estimated. The accuracy of computations in a linear theory

based on spectra estimated from a nonlinear record is open to question.

In particular, higher moments of the spectra are quite open to question.

Theoretical developments in the study of the short crested

Gaussian sea surface require numerous higher moments of the linear part



of the process. If computed spectra are used to estimate these moments,

many of the higher moments are obscured by high frequency white noise in

the estimate or made questionable by the high frequency nonlinear part of

the spectrum so that the results predicted from them are doubtful. If the

various theoretical forms for the spectra that have been proposed are used,

the fourth or fifth moment of the frequency spectrum becomes questionable

and the meaning of the second or third moment in the wave number spectrum

is obscure.

These problems are further complicated by the fact that sea

surface slopes depend on the very high frequency capillary waves. With

capillary waves, breakers, whitecaps and turbulence in the upper layers of

the water, any results on curvature, as they depend on the higher moments

of the spectrum, are highly doubtful for a storm sea.

The actual sea surface has gross features that are not in accord

with the short crested Gaussian model. No artist, for example, depicts

wind waves as irregular sinusoidal waves. Wave profiles along a line as a

function of distance show sharp crests and long shallow troughs that do

not occur in the model. This point will be discussed further in a later part

of this paper.

Purpose of pa,•er

The purpose of this paper is to derive three new random sea-

way models that appear to have some properties of actual seas not illus -

trated by previous models, to derive a few of these properties and discuss

other possible properties, and to show how these models appear to be

more realistic by comparing them with selected observations. These new

models explain some of the difficulties that arise with the higher spectral

moments. They may also be capable of giving some information about

whitecaps, breaking waves, and sharp crested waves. Since all mathe-

matical models of nature fail in one way or the other when the conditions

and assumptions in the derivation are not met, these models will provide

a second choice when observations of waves are to be compared with theo-

retical results. Some questions are raised that can only be answered by

additional theoretical work and by precise measurements of waves. The

theoretical properties of these models can be compared with the theoretical
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properties of those models described above in order to design more

definitive experiments concerning the nature of wind generated waves.

The Lagrangian equations

Let a, P, and 6 be the x, y, and z coordinates of a particle

of fluid. In the Lagrangian system of equations, a solution to the equations

consists of finding the positions x, y, and z of all of the particles in the

fluid as a function of time and the initial positions of the particles, a, P,

and 6. The Lagrangian equations, according to Lamb [1932] are given

by equations (1) where subscripts denote partial differentiation.

x ttx + yttYa + (ztt + g)za + pa/p = 0

(1) xtt XP + Ytt p + (ztt + g)z P + pP/p = 0

xtt x + YttY6 + (ztt + g)z 6 1 p 6 /p = 0

The equation of continuity is most conveniently expressed by

(2) d [a(x, y, z) 1(2) 8 O(a,P, 6)

Such solutions need not be irrotational, but, if a function,

F(a, P, 6, t) , can be found such that

(3) dF = (xt xa + Yt ya +z z a)da + ( zt zP)d + (x t x + Yt Y6 + (zt zdd

is a perfect differential, there is no vorticity.

A zero order solution to these equations is given by

x a
X-- -

(4) z =

P =po - g p 6

in which all fluid particles are at rest in hydrostatic equilibrium under the

force of gravity.

We expand, following the concepts described by Stoker [1957],

about the zero order solution in terms of a small parameter, c , as in

(5) in which F is a constant. Here we think of c as equal to ak

0!
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but the first order terms must have the dimensions of a length, and so
a = t/k is used in the various solutions that are obtained. The parameter

e never appears explicitly. See, for example, Longuet-Higgins [19531,
and Pierson and Fife [19611 for different ways that c can be interpreted.

ax = a+ Exi + C x 2

y = P+ cy 1 + C Y2

z +Cz + r z2
1 2

P = PO- gp6 + cp 1 + t P2

F=F0+ ErF + E z F 2F'=Fo +I

The equations in e become

xitt + gzla + Pla/P = 0

Yltt + gz 1 + pip /P= 0

(6) zitt + gz 1 6 + P1 6 /P = 0

Xlat + yipt + Z16t = 0

dF 1 = Xitda + yitdp + zitd6
2

The equations in c become

xztt + gz2a + P2a/P =- - Xlttla- y y Zttzl

y2tt + gz 2 p + P2p/p = - XlttXlp - YittYip ZittZlp

z2tt + gz 2 6 + p2 6/p = - XittXI6- YlttYl6 - ZittZ16

(7) [x2a+Y2p+ z2 6 +Ylpxla+xla 1z 6 +Ylpz 1 6 -zlaY1 6

- z ipyla- xYilaIt = 0

dF2 = (x2 t + xIt x IQ + Y it Y l a + zl t z la )da + (Y2 t + xlt Xl, + ylt yl+ zlt z1z)d

+ (z2t + zItYl6 + YltYl6 + zItz 1 6 )d6
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Equations (6) are linear. A solution of them in turn determines the

right hand side of (7). Since the left hand side of (7) is linear, in principle

at least, a solution can be found. Also in principle (though not in practice),

it is possible to proceed to as high an order as desired by this procedure.

The Gerstner wave

A solution to equations (6), applicable to waves in deep water, when

added to the zero order solution, yields equation (8).

aklI k6
x = a+ ex1 = o--g-e sin(kla + k2 p - Wt)

=+ = ak ekl sin(kla + k2  t)

(8) z = 6 + Cz1 -- 6 + a eka cos(kla - k2 P - Wt)

p = pO + pl =Pop-gp6

F = a -ek sin(k a + k2t - Wt)

In order to impose the condition that p(a, 6) p0 at 6= 0, it

is required that
2

(9) !-- = k
g

The continuity equation imposes the condition that

(10) k =kZ + k21 k 2Z

The first order solution has no vorticity to first order as F 1 has

been found.

An alternate form for the solution given by (8) is (11).

x = a - a coo Oe •/sin(' acoe-2 i 0 tsi(a (ocos80+ •sin G)-cAt)

8e26/g 2
(I) y = -a sin 0 w26gsin( W2(a coo 0 + P sine0) - w0t)

2 2z -- 6 + a ew6 9coo(- -- (a cos e + sin e) wt)
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These solutions (eqs. 8 and 11) are simply disguised versions of

the Gerstner wave in deep water as described in Lamb. The angle 0 is

the direction toward which the wave is traveling. When the solution is

periodic, as above, the original nonlinear equations are satisfied exactly,

but it can be shown that there is some second order vorticity and that

there is a second order correction to the pressure given by

(12) pk 2k6 a 2 k

p g2Po P8+ =-gp e 7-- gP

Another possibility also suggests itself. With x2 =a wkt e2k6 cos e0

y2 = a wkte2k6 sin 0 , and z2 =0, equations (1), (2), and (3) are still

satisfied to second order but third order complications arise. These two

terms are the equivalent of the s econd order current found in irrotational

waves in the Eulerian system of equationsai described in Lamb.

Extension of these results to finite depth would probably follow the

results of Biesel [1952] who achieved a remarkable representation for

periodic breaking waves by means of the Lagrangian equations (see also

Pierson [1955]).*

A randomized short crested model

The expressions for xl,yl Iand zI in either (8) or (11) are solutions

of equations (6). These equations are linear. Therefore, a sum, over dif-

ferent parameter values, of solutions of the form of x 1 , Yl, and zI will also

be a solution. If it is assumed that each particle has a displacement from

its rest position, ao, Poo 60S that is described by a stationary Gaussian

vector process with specified coherency relationships, a solution to equations

(1) that is correct to first order is given by equations (13).

00 e 2/ 2
x=- f fe'g cosO sin(--(a cos e+ P sinO(-wt + I(w,8)) q2S(w,0) dedw

0 -7r g

W 2 6g2
(13) y=P-? leW a' sinO a in(w (a coos6+ P sine) - wt + f(w. 0)) q2S(u), ) dO dcaoif W 6/g 2

-w7 •Z•/ 2

z= 6 +7 le cos( - (a coe0+esinO) -wt + e(w8,O)) q2S(.,,O)dO dw
0 -Ir

*The remarks concerning the Gerstner wave are in error as these results
six years later show.
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The notation here is that used by Pierson (1952, 1955) except

S(w, 0) is the resolution of the variance of the particle motions into fwre -

quency and direction. For some fixed particle, say, one at the sur•face

given by a = 0, A =0, 6 =0, the motions x = x(t), y = y(t), and s = z(t)

form a stationary vector Gaussian process such that the spectrum of'

x(t) is

fS(., e)(cose)2 d,

the spectrum of y(t) is

f$(w, e)(sine)2 dO,

the spectrum of z(t) is

fS(w, 6) de,

the cospectrum of x(t) y(t) is

fS(w, 6) coso sine dO ,

the quadrature spectrum of x(t) z(t) is

fS(w, 6) cose dO

the quadrature spectrum of y(t) z(t) is

!S(w, 6) sine d9 ,

and all other cross spectra are zero.

Other notations are often useful. For example, a notation sizmilar

to that of Longuet-Higgins [1957] would yield (14) as the complete equi-

valent of (13).
km k6 t+

x = a - E ar--ek- sin(kma+ kP- wt n+ )
mn kmn n nk -

(14) Y = "a mn k8 sin(kma + kn P -mn t+Emn)

z = 6 + 1" amn ek 6 cos(k ma + knc w mnt + Emn)

In (14), added conditions are that

2 2 2
(15) rn n mn

and that
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2

g V'm n

The free surface

Those particles on the free surface are described by the condition

8 = 0 and (13) becomes

W W 2
x=x(acAt) = a- f fsin(!--(acose+A usine)-÷t+) cosO •2S(w, e) de 8

s0lW 2
(17) y = y(a,Pt) = P - f fsin(.--a cose+ P sine)-wt+ e) sine 42S(w, e) ded

0 -W "

coil 2

z = z(a,P,t) = f f cos(!- (a cose + P sine) - wt + .) Ar2S(., 8) d6 dw

In principle, and perhaps admitting triple values for the inverses

over limited regions in the x, y, t space, x = x(a, P, t) and y = y(a, A, t)

imply inverses of the form

a = a(x, y, t) and
(18)

S= P(x, y, t)

so that the free surface can be found from

(19) z = z(a(x, y, t), P(x, y, t)t) = z(x, y, t)

The surface so defined is certainly not the equivalent of the short

crested Gaussian sea surface. The short crested Gaussian sea surface

is equivalent to this representation when the amplitude of the particle

motions becomes so small that a = x and P = y are satisfactory approxi-

mations to the inverses given by (18). Otherwise, further study suggests that

= z(x, y, t) has many features of actual waves in that the crests can be

quite sharply pointed and in that the higher nonlinear harmonics that occur

in the higher order derivations in the Eulerian system are already present

in this model.

It is believed that the problems that arise in the adequate probabi-

listic description of the surface defined by (19) in terms of (17) and (18)

will be very difficult to solve and that considerable effort will be required.

All of the problems that arise in the study of Gaussian noise and in the

study of the short crested Gaussian sea surface have their analogue in this



model.

Second order effects in the short created model

For reasons to be discussed later, it may be necessary to proceed
to second order in this model and determine the effects of equations (7) on

the wavy surface especially if breaking waves are to be studied.

The long crested linear model

If S(cw, 6) becomes concentrated at the angle 0 = 0 and degenerates

to a function of w only, equations (13) become

x x(ci, 6, t) 2 - 64 g +o2x= X(L ,0= CL- f sin(!-=- a - wt + 4) 2-2S(W0)d.

o g

(20) y = Y(P) =
0 e26/g -2

z = z(a, 6, t) = 6 + j cos(L- a - wt + e) qZS(f) dw

An alternate notation is given by

k6
x = a- Xan e n sin(kn" -wnt + in)

(21) k 6
z = 6 - Ean . n cos(kna -wnt+)

For 6 equal to zero, the inverse of the first equation is

(22) a = a(x, t)

This implies a free surface given by

(23) z = z(o(x, t),t) = z(x, t)

Second order effects in the long crested model

The long crested model is more amenable to an investigation of

second order effects because it is simpler. We consider the problem of

two waves, and then generalize to the randomized process. For two waves

the linear solution is given by
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.. 16 k 2 6

Xl=-a e sin(ka - Wia + E1) -aZe sin(k2 a - Wet + 2 )

k 16 k26

(24) x1 =a 1 e cos(kQ-It+1 cos( k  -2t +2)

P1 = 0

aF 1 k a a2c° 2 ek 2 6FI e 1 in(k a-Wt + 41 ) + 2 in(k al- W t+ )
1l 22

It is irrotational to first order. For simplicity, we assume that w2> wl1
The second order equations to be solved are obtained by substitut-

ing (24) into (7) where y is set equal to P only and all partials with

respect to P vanish. These equations are given by

x2tt + gZ 2 a + P2a /P = 0

2 2 2k 16 2 2 2k 2 6
z2t +gz 2 6 +P 2 6 /P =g(ake + a 2 k1 2

+ 2ala 2 kIk 2 e cos(2 "klda" (w2 " 1)t + (2 "1+ Y

[25] [x2 a+ z 2 , -2aIa2 e(kI+ k2 )6 cos((k 2 -kl)a- ( 2 -wl)t+ '2 -'l )t = 0

- 2 2klw1 2k1 6 a~~2 Zk 2 6
dF 2  = [xzt - (a 2klw e e + •

(kI+k 2 )6
+ aIa2 (wlk2 + wl2 kl) e cos ((k 2 sk) -kl)- -1t+ E2 - 1) ) Jd 6

ala2 (k1+k2 )6
+ f(Zzt"- (--•j (w2 " - 1 )(• 2 • 1 ) e sin((k2 - kl)a - (w02 - wl)t + '2~ - 1) ]d6

In (25), we have four equations in p, z and x. The first three de -

termine a solution, subject to appropriate boundary conditions, for p, z,

and x. The last is then used to see if the solution is irrotational and to

make the solution irrotational if possible. Note that x = x2 (6)t can be

added to (23), if desired, as part of the total solution to the equations. The

boundary conditions are that P2 = 0 at 6 = 0 and that x2 and Z2 approach

zero as 6 approaches - 00

If the right hand side of the second equation is represented by

g[F(6) + G(a, 6, t)] and the third equation is written as x2a + z2 6 -G(i, 6, t) 0,
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it is possible by cross differentiating the first two equations, subtracting

and combining the result with the third equation to obtain the result that

(26) 3 2tta + z 2tt66 = Gtt6 + gO 6 6

This provides the inhomogeneous solution for z2(U, 6, t). The

third equation then determines x2 (a, 6, t) and the first two yield the same

solution for p2.

Howe -er P2 does not satisfy the free surface condition, and a

solution to the homogeneous equations must then be found that when added

to this solution yields a proper form for P2'

This provides solutions to the first three equations. When x2 and

z are substituted into the last equation, it is seen that the vorticity can
2 2k 16 z a2k °2k 2 6

be made zero by adding a1 2 k We t + a 2 k2 w2 e t to x2 .

The second order terms therefore become
a~a z +W\kz+k)6

x2  a, a 2)3 2 3 sin c 2 -k1 )Y " (w2 "-wl)t + 42"'d
9(W2 1

a l a 2  (k 2-k1 )6

g (w2 +ci)• 2 e 1( - - (2- l)t+ *2-G1
2k 1 6 2k 2 6

+ a12 kI e 2 t+ a 22W2 k2 e t

a(a 2 a, 2 + (k1)e(+kl)6
( z7) z2 = (w )e cos(( 'k1 )' -(w 2 -(0')t+ 2-' 1 )

aa 2  (k 2 k)6 co -k)-(Z-)t + 42 " E1 )

P -2a, ke 2k,6 + a 2 k 2 (e k6

(k1+k2 ) 6
- 2paIa 2 w2w 1 • co((k2 -kl)"- (w2 -w1 )t + 12 "- 1)

(kZ-kl)6
+ 2paia2 oaW1 e coj(k2 - kI)cL- (w2 wI)t + 42 -E 1 )

F 2 =a laZw2 e(k2"kl) sin((k2 -kl)I- (W 2 " 1 )t + t"G1
(k 2+1

SL+ ea (2 -kl ) • sin((k -l-(2 -l)t- + 42 -"1)t 2"l-

+~~~~~~~~~~~ ~ ~ ~ ~ aa•:W1 k k)sAk2 a( -W tfZ 11



The full solution is obtained by combining equations (5), (24)

and (27). This solution satisfies the equations to second order. It is

irrotational to second order.

If more terms are added to the linear solution subject to the con-

dition that wI1 < w2 <w 3 < '" < wn' the terms in the linear solution inter-

act in a predictable way to generate appropriate second order terms.

The randomized second order solution for x(a, 6, t) and z(a 6, t) are

given by equations (28).

ki6

x(a,6,t) = a - E ai • sin(kia-wit + Ii)

a.aw.3+w.3\ e(k.+k.)6

- x z aiaj (L.JL (k. j +k sin((k.-ki)-(W -W• )t+Ej - i)
pi g\ 9 jwi ji

+ E Z j(W + )W e(kjki)6 sin((k -k )a -(w w )t + 4
p~i i g j i1 j i j i j i

+Za.2 w.k.e 1 t1 I11

(28)
k. 6

z(a,6,t) 6 + Zaie 1 cos(ki- Wit +.di)
aia •ij+ ~ (ki+k)

+ MZ aij (w..2  w + )e i k -k )c-(w -

- 2 -- J• w wJef cos((kj- ki)o-(wj -wi)t+ tj•ij>ii g ii
a. a. (kj-ki)6

"j>iZ i •g 'd(•j + i)d e cos((k j- k i)a- (wj- wi )t + e- di)

The solution given by equation (28) has features that are quite

different from solutions obtained by the assumption of irrotationality in

the Eulerian system. The trigonometric second order terms involve only

the difference between two frequencies. One of the second order terms

dies out rapidly with depth. The other dies out slowly with depth. The

term that is linear in t is the average drift of the particle, and as a group

of higher waves passes, the effect of the second order terms is to increase

the drift. Correspondingly, as low waves pass, the drift is decreased.

The positions of those particles that are on the free surface are

obtained by setting 6 0, and the result is equation (29).
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x(a.t) = a - Zai sin(kia - ti t + EI)

-(29 p .1L9Wi + sin(Okj- ks)a- (wj - wi)t + Ej- .i) + V ai wikit
j>ili g •j •

(29)
s(a,t) = T ai cos(ki-wit + %i)

+ z I a-a, co(() -ki)- (wj-wi)t + ej-ei)

j>pi i 
J

The parametric equations, x = x(a. t) and z = z(a, t), imply

an inverse for x = x(a, t) such that a = a(x, t), and so

(30) z = z(a(x, t), t)

is the equation for the free surface correct to second order as obtained by

this solution of the Lagrangian equations of motion.

Comparison of the Lagrangian and Eulerian models

Results obtained in the Lagrangian system of equations are

difficult to compare with results obtained in the Eulerian system of

equations. In the Eulerian system the fluid velocity at a fixed point below

the surface will be Gaussian in the linear Gaussian model. The velocity

at a fixed point in the linear Gaussian model in the Lagrangian system has

not been found but it involves finding

dxu = = u(a(x, z,t), 6(x, z,t)0 t)

(31) a = a(x, z,t) , and

6 = 6(x,z,t)

from equations (21), even in the long crested case, and this velocity is

not Gaussian unless the waves are so low that a = x and 6 = z are suf-

ficiently accurate inverses of x = x(a, 6, t) and s = z(n, 6,t). -

However, a higher order model in the Eulerian system of equations

may well yield velocities comparable to those given by a model to a lower

order in the Lagrangian equations.

The first and second order models in the Lagrangian equations

appear to have advantages over the comparable first and second order

models in the Eulerian equations, as will be shown later. Since the
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resulting free surface is non-Gaussian it may be just as difficult to obtain

results on the probability structure of the first and second order Lagrang-

ian models as it would be to obtain results on a much higher order Eulerian

model. If the problems prove intractable, numerical computation is a

possibility that should yield some results.

The real problem is thus to compare the six available random

models with nature and to devise relevant experiments to see which model

comes the closest to agireeing with that which is observed.' Any linear non-

Gaussian model that can be devised along with its higher order extensions

should also be allowed to enter the competition. We suspect that such

models will not do as well.

Re capitulation

So far in this paper, three new random sea surfaces have been obtain-

ed. They are the short crested sea surface given by (17), (18), and (19)

based on a linear superposition of the particle motions; the long crested

sea surface given by (2l), (22), and (23) based on a linear superposition of

the particle motions; and the long crested sea surface given by (29) and

(30) based on the second order correction to the long crested model. Each

model is irrotational to the order to which it is carried out. The notation

chosen to represent the second order long crested model is not as useful

as the notation used by Tick [1959] in his study of the second order long

crested model in the Eulerian system. These results, however, show the

existence of such a model.

Properties of the models

The multivariate probability structures of these models have

not yet been found. Only a few of the properties of the long crested

linear model have been found. A possible realization of z = z(x) has -

been constructed, and the probability density of z(x) for a fixed x has

been found.

i
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Construction of x - z(x) for the linear model

With 6 and t equal to zero in (21), the result is

) x = a+ xI = a- a sin(kna+ 4n)
(32)n n

z = zI = Zan cos(k na + n)

The quantities x1 and zI form a vector Gaussian process.* The spectrum

of xI is S(k), the spectrum of z is S(k), the co-spectrum is zero, and

the quadrature spectrum is -S(k). The coherency is one.

Tick [1961] has developed procedures for the construction of vector

Gaussian processes with required spectra, cross spectra, and coherencies.

A vector process with a reasonable spectrum and with the proper cross

spectra was available, and it was a simple matter to prepare graphs of

x(a) and z(a) as a function of L.

The results are shown in figure 1, where x,(a), z(a), and a I x,(a)

are all graphed as a function of a. For any value of a in this figure, a

pair of values for x and z result that can be plotted as a point in the x, z

plane as shown immediately below. The points in the x, z plane then trace

out the indicated curve that represents z = z(x). Only two crests are shown

in figure 1.

Figure 2 shows the result of preparing much longer graphs of

x(a) and z(a). Eight crests are shown in the figure. In many ways, this

artificial record appears to be much more realistic than one that might be

obtained with a linear Gaussian model.

These results show that, although the spectrum of the orbital motion

could be band limited (i. e. , identically zero outside of a certain wave num-

ber range), the spectrum of z = z(x) could be very rich in higher harmonics

of the orbital motion spectrum. With one or more simple discontinuities in

slope, as would be achieved at the sharp crests, the asymptotic form pre- -

dicted by Phillips [19581 would be found as applied to the long crested case.

However, it would occur at wave numbers much higher than are presently

capable of being resolved in spectral analyses.

One of the difficulties with the Eulerian models is that they do not

indicate within themselves unrealistic wave forms. A spectrum that would

yield an impossible sea condition does not appear to be different from one

that would yield a realistic sea condition. The linear Lagrangian model is

*In fact, z, is the Hilbert transform of x1 .



-16-

Fig. 1. GRAPHS OF Z(CL),X,(a), AND X(s) TO SHOW HOW Z ZCX) IS OBTAINED
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Figure 3. Parametric solution of z(a),x(a) to obtain free surface
z : z(x) with loops.
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already capable of differentiating between completely unrealistic spectra

and more realistic ones. If the space scale of x, and sI is changed for

the same vector realization used to construct figures 1 and 2. the result

is figure 3. Here a is triple valued for a certain range of x, and when
z(x) is plotted the surface forms a large loop. This may be indicative of a

very unstable state in the waves that could not be attained in nature be -

cause breaking waves would form each time such a loop would be initiated

in the space-time representation and the kinetic energy of the wave motion

would be dissipated by turbulence in the whitecaps to an extent that the

particle motion spectra would be modified to a more realistic condition.

Conditions for a loop in z = z(x)

A loop occurs in z = z(x) if z is triple valued as a function of x.

This in turn occurs if x(&) is not monotonically increasing. Thus if

m < 0 where

(33) m =-=I-Ea k cos(kna - wnt + E
d( -n n n n

a loop will form.

I The probability that

(34) X ankn cos(kna- w nt + n) >l

must therefore be investigated.

The three moments given by

(3S) qjo = f S(k) dk
0

(36) l = fS(k) k dk
o A-

and

(37) 'I = f•S(k)k dk
0

need to be considered in this connection, and from (34) it is evident that

41 must exist and be bounded.

The probability that m will be less than zero is given by
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1 e t2/2402 1 .- t2/2* 2

W 2 1N 2
=3 I d -= ---- i • dr.'

Equation (38) may be interpreted to be the probability that some particle,

Got will be found at the top of a loop between the points where s = z(x) is

vertical for some particular time of observation. Such a particle is

surely involved in a breaking wave. Other particles that do not satisfy

this condition also may be involved in a breaker.

Since the spectrum S(k) has not as yet been measured, it is

necessary to investigate possible relationships between S(k) and spectra

of z(x, 0) and z(O, t) before estimating the probability in (38).

Marginal distribution of z=z(x)

The graphical construction used to illustrate the generation of the

random function z = z(x) can be used to obtain the marginal distribution of
dxz = z(x). The joint density of z(a, 0) and = m(a, 0) is bivariate normal.

The variance of z(a) is o0 , the variance of m(x) is kP and the covariance

is -'l as defined in (34), (35) and (36).

If f(z, m) is the bivariate normal distribution of z and m. we

note that

(39) F(Z, m) = f(z, m)m

nearly has the required properties of a probability density function since

m is dimensionless and E(m) = 1. Also since x and d have the same

dimensions, a given number of equally spaced points in a small interval

of a given length over a produce m times this number of points with this

same spacing in an interval of a different size on the x axis.

The function F(z, m) is not a probability density function strictly

because it is negative for m < 0, but this corresponds physically to im-

possible configurations of z = z(x), and points on a = z(x) generated when

m < 0 will be shown to have extremely low probabilities. Actually

even more points on z = z(x) are probably destroyed by the breaking pro-

cess, and z = z(x) is modified in form long before m, becomes zero for

some sea conditions.

However, as an approximation, we can truncate F(z, m) at

m = 0 and renorrralize. Thus
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(40) S{F(z, m)dzn dz a - Ye 42 2 -1/22]

Then2

(41) E(z) = z F~z S5~m~m] dz = - " .~2
0 K 4 '2w 1/ F

2 e___._P1
(42) ENz ) - r S 5 /d9 + (l+l)4ý 2

(43) E (z 3 ) = -'rl [ 341 5 e- /2/2+e 2]

Also the probability density function is given by

K2w'I~o 0vpYt 0

ON/i4

if 4A 2 is small compared to one,

(45) E(z) -
(46) E(z 2)= 4

(47) E(z 3  = 3ij

and 32/0

(48) p(Z) =e QI

Let

(49) Z Z ý

Then 2 Zi 0, *2

(50) p(s') = e W (il, 1 o f
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and

(51) E(s') - 0

(52) E(z'2) C= %o "J 2

(53) E(z'3) o 0

(54) E(z' 4 ) = 340 .2 6o 4, 2 344
0 0o1l

The skewness is zero and the coefficient of excess is

Estimates of 0o') 1, and

From (52) the average of z'(x) is zero and the variance is,

say, % o = o" 2. This is the variance that is estimated by a free sur-

face wave record.

Since

22 2wdw
(55) S(k)d =S(-) - =S6(w) d)

=S"(f) df

and since (for example)
4f 4

(56) S(k) k2 •k = S"(f) 16v - df

let us assume that

/K/fn r~~

(57) S"(f) = u

S0 otherwise

From equations (35), (36), (37), (55), (56), and (57), one can

obtain the result that

(58) 410 4U

(59) ,• - )f 2

and
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4 (f/f)116i4 /n - 1. , " -
(60) ( n=.>us~ u:/f I T

where

(61) D 1 (1- 641•1" (] j1)4(%fu"r "o .

For one fairly severe storm at sea 4o was about equal to 116 ft2

and f, was equal to 0.046. The results above permit an investigation of the

sensitivity of the particle motion moments to the values of n and fu.

Tables 1 through 5 give the values of %o' '10 '2$ /•i/, , and

2 for various values of n and for f 0.46, 0.92, 4.6 and ao

The values of fu correspond to periods of 2.16, 1.08, .216 and zero seconds.

Table 1.

Values of 'o for various values of n and f

for o* = 116ft2 and f, = 0.046 sec-1 u

""n _ 0.46 0.92 4.6 co

5.9 116.26 116.26 116.26 116.26

5.7 116.28 116.28 116.28 116.28

5.5 116.30 116.30 116.30 116.30

5.3 116.32 116.32 116.32 116.32

5.1 116.35 116.35 116.35 116.35

4.9 116.38 116.39 116.39 116.39

4.7 116.42 116.43 116.44 116.44

4.5 116.47 116.49 116.50 116.50

do
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Table 2.

Values of for various values of n and f

for * = 116 ft2 and f, z 0.046 saec".

f
u 0.046 0.92 4.6 o

5.9 --O• .. 0----O.5 0.51 0.51

5.7 0.53 0.53 0.53 0.53

5.5 0.55 0.55 0.55 0.55

5.3 0.57 0.57 0.57 0.57

5.1 0.59 0.59 0.59 0.59

4.9 0.62 0.62 0.62 0.62

4.7 0.65 0.66 0.66 0.66

4.5 0.69 0.70 0.71 0.71

Table 3

Values of for various values of n and f
for = 116 ft 2 and f, = 0.046 sec 1 .

f
u 0.46 0.92 4.6

5.9 .0034 .0036 .0038 .0039

5.7 .0038 .0042 .0046 .0048

5.5 .0044 .0049 .0057 .0064

5.3 .0051 .0060 .0076 .0102

5.1 .0060 .0075 .0105 .0290

4.9 .0072 .0097 .0162 Go

4.7 .0087 .0127 .0261 o

4.5 .0107 .0167 .0446 Go
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Table 4.
Values of 1/4Z for various values of n and f

for 0oe= 116 ft and f, w 0.046 sec 1 .

f

u 0.46 0.92 4.6 o

5.9 17.2 16.7 16.2 16.1

5.7 16.2 15.5 14.8 14.5

5.5 15.2 14.2 13.2 12.5

5.3 14.1 12.9 11.5 9.9
5.1 1,.9 11.5 9.8 5.9

4.9 11.8 10.2 7.9 0

4.7 10.7 8.9 6.2 0
4.5 9.7 7.7 4.7 0

Table 5.

Values of *1/ 2,o for various values

of n and fu for 4o = 116 ft2 and ft =0.046 sec"1

f

n 0.46 0.92 4.6

5.9 0.67 0.63 0.60 0.59
5.7 0.63 0.58 0.53 0.51

5.5 0.59 0.52 0.45 0.40

5.3 0.54 0.46 0.37 0.27
5.1 0.50 0.40 0.29 0.10

4.9 0.46 0.34 0.21 0

4.7 0.42 0.29 0.14 0

4.5 0.38 0.25 0.10 0
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Discussion of tables

The assumption that the range that has been assumed for the

values of f. and n for the spectral forms for S(k) must first be questioned.

The range of fu is probably more than adequate. However, the relation-

ship between particle motion spectra and free surface spectra is not known.
Perhaps n can be even smaller than 4.5 and still yield spectra for the

free surface that behave over a given range like 1/fP where p is greater

than 5 as wave observations seem to suggest.

If these assumed values are reasonable, it would follow that
a loop in a realization, z = z(x), would be a very rare event. The smal"-

est value (except the zero) in Table 5 is 4.7 and the associated proba-

bility is less than 10"5. If loops were identified with breaking waves, the

results would imply that waves shorter than 0.2 feet and n's less than

5 produce such breakers and this does not seem at all reasonable.

Stated another way, results based on spectra like K/f 5

depend very strongly on the high frequency tail of the spectrum where the

waves are less than 3 inches long and on the fact that the exponent is

exactly 5 and not 5.1. The original conditions correspond to waves with

a significant height of 42 feet and with representative lengths of 1500

to 2000 feet. Breakers in such a sea certainly occur and surely have

dimensions exceeding 3 inches. Thus although such loops identify un-

realistic spectra, the limitations on the spectral form appear to be due

to effects that occur before such loops even have a chance to attempt to

form.

The tables also suggest that equation (49) will be approxi-

mately correct as to general shape, and that the higher moments are

both difficult to detect theoretically and to measure in practice.

Equations (45), (46), and (52) are satisfactory approximations, but the

approximate higher moments and skewness and kurtosis values will be in

error by large percentages. The distribution of z as given by equation

(44) when graphed for two conditions, one for which fu = 0.46

and n = 5.9, the other for which f u= 4.6 and n 4.5 can hardly be dis -

tinguished visually from the normal curve.
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Second order periodic breaker effects

The Gerstner wave satisfies the nonlinear Lagrangian equations

exactly. However, a particle never moves far away from its mean position.

A strong field of vorticity exists. The limiting steepness of a Gerstner

wave is given by ak = 1. For irrotational waves Michell [1893) has shown

that - 0.142, and ak = 1 corresponds to - 0.32 which yields a wave

much steeper than is possible for irrotational motion. It was mentioned

above that the Gerstner wave could be made irrotational to second order

(with third order complications) by adding an appropriate drift current.

With 8 equal to zero, this drift current becomes a2 wk.

The parametric representation for the free surface then be -

comes

x = a - a sint(ka - wt) + a 2 k wt
(62)

z = a cos(ka - wt)

for a periodic wave, which can be transformed by solving for a in the

second equation to become

(63) cos- 1 (z/a) - ak sin(cos' (z/a)) = kx - wt-a 2k 2Wt

and therefore the phase speed obtained from the Jagrangian equations

solved for irrotational motion to second order becomes

(64) C = .(1 + a 2 k2 ).

The phase speed obtained by solving the Eulerian equations

to third order for irrotational motion is given by

(65) C = & (1I +ak

The Lagrangian waves to second order are thus not consistent

with Eulerian waves to third order. The second order periodic irrotational

Gerstner waves appear to be traveling as if the linear phase speed had

been simply added to the drift current. Third order periodic irrotational

Eulerian waves have a drift current that is the same as the Gerstner

wave, but the phase speed correction is only half of the phase speed cor-

rection for Gerstner waves. The discrepancy can be explained by noting
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that there probably is a residual vorticity field at third order in the La-

grangian solution that may account for the difference.

The particle velocity at the crest for the Gerstner wave is

(66) u(Oo 0) = (/O.t =U(O0) =Odx-/ =O ao I a~kW

and when the phase speed is set equal to the particle velocity, the limiting

form

(67) ak = 1

is still obtained.

With ak = 1, the second order phase speed and the particle

velocities at the crest are exactly double that of the linear theory, but it

is known that the phase speed due to finite height cannot exceed about 1.2

times the linear phase speed. These results are all indicative of the need

for different wave models and for measurements of higher order effects

in waves.

Construction of z = z(x) for the second order equations

From recent results of Tick [1961], it may be possible by start-

ing with equations (28) to construct the vector process given below by an

appropriate sequence of operations on the linear realizations constructed

above.

x(a, 0, 0)

z(a, 0, 0)

x(G, 'r, 0)

z(a. r, 0)

x(a, 0,6

z(a,O,6 1 ) 0

z(a, .r, 61)

xt(a. 0, 0)

xt(a. 0,61)

I.. ., ' .
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The construction may even turn out to be considerably simpler

than that employed by Tick [19611 because only low frequencies are in-

volved.

In the above process, T is to be a fraction of a second after

t = 0, 61 is to be a foot or so below the free surface. The first two

pairs will yield an estimate of the instantaneous speed of a crest. If

xt(a, 0, 0) exceeds this value, then the crest could be considered to be a

breaking crest. The other terms should yield some information on the

size of the region of unstable motion. A range of possible spectral forms

can be used to construct this vector process and some idea of the fraction

of breaking waves in the total can be gained.

However, from the results given above on the linear random

model and on the periodic second order irrotational model, the results

obtained from such a construction will probably not be quantitatively cor-

rect as they may yield waves that are too high physically by a factor of

two, even for irrotational waves to second order.

Breakers in a random sea

Whitecaps and breakers in deep water are an integral part of the

problem of wave generation. Many photographs of waves in deep water show

such breaking waves. The equations governing the wave motion fail locally

and a breaker is produced. The water in the breaking part of a wave is

certainly governed by physical laws that are completely different from

those that govern the wave motion. A breaker is probably produced when

the water particle speed exceeds the speed of the crest, but other effects

such as the wind actually blowing off the crest of a wave before this re-

quirement is met may also play an important part.
Moreover, the turbulence produced by a breaking wave, governed

by eddy viscosity laws, will tend to damp out the higher frequency linear

components in the spectrum of the wind generated sea. The absence of the

local chop in the wake of a ship illustrates this effect.

Whenever a breaker disorganizes the fluid motions, there is

a mass of water moving forward at the crest of the waves. This effect

may contribute to both the drift current at the surface and to the growth

of the lower frequency waves.
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Also there is a wind drift current in a local sea that is nearly in

the same direction as the traveling waves. This wind drift current pro-

duces a field of vorticity in the same sense as the direction of propagation

of the waves and may well cause breaking to occur for considerably lower

wave heights than even irrotational theory would predict.

The work of Longuet-Higgins [19531, [1960] has shaken the con-

cepts of irrotational motion for gravity waves to their very foundation

His results predict that, even in the absence of wind drift currents and

turbulent effects due to breakers, the mass transport velocity in deep

water may be considerably stronger than irrotational theory predicts if

the waves have been running long enough.

Moreover, as Longuet-Higgins [1953] has pointed out, Duvriel-

Jacotin has shown that any mass transport velocity can be used as the

starting point and a wave motion can be superimposed thereon.

It is also known from classical periodic wave theory that a sharp

angle at the crest of 120* is another way to define the limiting height of

a periodic wave of the form z = z(x). It may be possible if the other con-

cepts discussed above fail, due to the fact that the results are only to

second order, to study constructions of z = z(x) as a random process to

see how many waves approach this limiting form.

With all of these preliminary remarks it would seem that

equation (29), with perhaps still an arbitrary second order vorticity field

added, can provide some insight on the growth of a wave spectrum. Con-

sider two orbital motion spectra with the same variance, one with con-

tributions with relatively higher frequencies than the other. The mass

transport at the surface will be stronger for the spectrum with-the richer

high frequency content but at the same time the speeds of the crests will

be less. The interaction of these effects could conceivably cause the

higher frequency waves in the spectrum as they are overtaken by and

ride up on the crests of the longer lower frequency waves (Longuet -Higgins

and Stewart [1960]) to break and dissipate by turbulent action. At the

same time the low frequency components can continue to grow and even

be caused to grow by the breaking of the shorter waves. Considerations
7such as this may explain various wave spectra where forms like K/4J

K/W6 , K/w 5 "5 0 and K/ce have been proposed and where the exponent
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appears to depend on the heights of the waves that were measured.

Comparison with observations

The purpose of this part of this paper is to present the results of

some observations that suggest that the various models proposed above

are more nearly in accord with actual waves than models based on the

Eulerian equations.

Figure 4 is a copy of a photograph given by Roll [19571 for waves

a few centimeters high and 8 to 35 cm long. The third photograph from the

top shows a remarkable similarity to figure 2. For various wave heights

and apparent lengths, either a rounded crest or a sharp crest occurs. Note

the marked departure from normality that slopes and curvatures would

have if they were evaluated from such a record.

Figures 5, 6, and 7 show some reproductions of seven selected

wave profiles obtained by stereo -photogrammetric techniques from photo-

graphs taken aboard a ship. The height scale is five times that of the

horizontal scale. The profiles show the presence of sharp crests and

shallow troughs as these models predict. Note also that the profiles are

much richer in high wave numbers than corresponding time histories are

rich in high frequencies. These profiles were kindly furnished the author

by Dr. Norman F. Jasper of the David Taylor Model Basin. Additional

information on these records is given by Brooks and Jasper [1957].

Figure 8 shows some selected time histories obtained in Buz-

zards Bay by Harlow G. Farmer [Farmer and Ketchum (in press)]. The

original records have been reversed, so that time increases from left

to right, and blackened below the original trace. The wave sensing sys-

tem consists of a very fine wire (0.015 inch diameter) that appears to

follow the water elevation more accurately than previous wave poles or

wave wires. A number of the crests are very sharply pointed. There

is evidence that a breaker occurred in the top trace where one crest

shows a nearly vertical rise at the crest. Since these records are much

richer in high frequency content (sharp crests, and vertical rises), spectra

computed from them will be richer at high frequencies than spectra pro -

viously reported for waves in this general range of heights and period$.

The figures and illustrations in SchuleJkin [1960] also suggest

that the randomized Lagrangian model corresponds well with reality.

Ii
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Summary

The three models based on the Lagrangian equations proposed

in this paper show some features of waves that are observed to occur and

that do not appear to be present in models based on the Eulerian equations.

The probability structures of the various resulting free surfaces are not

understood. However, in the simplest model, free surfaces can be con-

structed that show very interesting properties. There is some hope that

the effects of breaking waves can be studied by means of these models.

It is also evident that the measurement of random seas needs to be con-

siderably refined so as to detect the higher order effects possible in

these various different models.
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